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Abstrllct-A method is developed for the analysis of the nature of the singularities at the free edge
of an elliptical hole in a composite laminate. The method is general enough to be applicable to any
type of laminate with or without a hole. Boundary layer theory, as originated in aerodynamics is
used to simplify the equations applied within the boundary layer region, while compatibility is
achieved at the other border of that region to comply with anisotropic plate theory. In the present
case the method is applied to investigate the effect of the free edge of a hole on stresses at the ply
interface within the boundary layer. The immediate application within that region is the solution
for the Energy Release Rate which is essential to the evaluiltion of critical conditions such as
delamination initiation. Attention is focused on the inlluence of adjacent ply orientations on the
order of singularity at the interface.
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vector of unknowns in the complete formulation
domain of integration
elliptical hole axes in .t, and Xl directions. respectively
coclficients vector of the homogeneous solution
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unidirectional material properties
distilnce from hole to lilminilte edge
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stresS function used for the homogeneous solution
stress eigenfunctions of the homogeneous solution
functions of the compliance and coelT. of part. solution
displacements eigenfunctions of the homogeneous solution
magnitude related to the homogeneous solution
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magnitude relat\.'I.l to the characteristic equation
differential operator
dilferential operator
remote loading-moment W.r.t. the indices
magnitude related to the mth ply
number of unknowns:; number ofcolumns in the coelficients matrix
function related to the homogeneous solution
magnitude related to the particular solution
function related to the homogeneous solution
uniaxial remote load in the x, direction
order of matrilt-number of rows
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polar coordinate starts at the origin of the Cartesian system
tensorial compliance matrilt
reduced tensorial compliance matrilt
the method of singular value d~'Composition
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transpose
laminate thi<:km:ss
fun<:tion relat.:d to the homogeneous solution
matrix of orthononnalized cigenvectllrs
function rdaled to the process of gllverning equations
displacements vectllr
rigid body displacements
matrix of orthononnalized eigenvectors
vector rdated to the singular value decomposition method
vector related to the singular value decomposition method
directions
argument of Lekhnitskii's stress functions
scanning azimuth at the hole
Greek notation: 1-6
series of eigenvalues
series of eigenvalues at interface m
strain tensor
coefficients related to the characteristic equation
Lekhnitskii's stress potential
trial function related to the weighting technique
roots of the chara<:teristi<: equation
Poisson's ratio
fiber dire<:tion at mth ply
polar <:oordinate starts from the ex.amined interl;lce
diagonal matrix. of eigenvalues. related to the S.V.D.
stresses in Greek notatillll
stress tensor
stress tensor computed fIll' the anisotropic plate with hole
angle measured frolll the 1I1Ierl;I.:e to 1/,
rigid hody [()talions
conjllg;lte of conI pie, nlllllher
lirst and second dilrcrenllation
p;lI·tial diffcrenllation
Iranspose of Ihe clllljllgaies
delerminant

I. I NTROf)UCTION

It is known that a wide range of properties and performance can be achieved through
the utilization of composite laminates in structures, since it is possible to adjust the ply
orientations, stacking sequence, and thickness, At the edge of the laminate, however, high
values of stresses arc often obtained due to ply deformation mismatching, which may lead
to delamination, That delamination can be controlled by artificial means such as stitching,
tufting, or constraining the edge by caps. A more natural procedun: is available through
optimization of fiber orientation, weaving, and layer sequencing in the vicinity of the edge
in order to reduce edge effects, or even by reversing the interlaminar situation by changing
tension conditions to compression.

The behavior of the stress field at the edges of composite laminates due to deformation
mismatching has been the subject of extensive investigation during the last two decades.
Pipes and Pagano (1970) used a finite difference method to solve the relevant elasticity
equations, whereas Wang and Crossman (1977) employed a finite element approach to
investigate this phenomenon. Recently, an approximate method was presented by
Kassapoglou and Lagace (19S7) using the force balance method in conjunction with
minimization of energy. Due to the approximate nature of the approaches involved in the
previous studies, it was not possible to determine the order of singularity of the stresses at the
free edges, Wang and Choi (1982a,b) derived an analytical solution, following a Lekhnitskii
(1963) formulation, and obtained the exact order of singularity at the edge of the laminate,
Their derivation involves a special form of Lekhnistkii's stress potentials which explicitly
includes a parameter identified as the order of the singularity, However, their solution for
the stresses is approximate, and due to mathematical difficulties the method was only
applied to the analysis of special types of laminates at the straight free edge, as was done
by the previously mentioned researchers.

Zwiers ct al. (1982) have used the method of Stroh (1962) to consider the problem,
and find a logarithmic singularity in addition to the "j singularity for general laminate
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Fig. I. Geometry and cO{lrdinates of composite laminate with elliptic-al hole.
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interfaces in some cases. However, the nature of In (r) singularity does not depend on the
ply orientations on either side of the interl~lce. Hence, it is not of interest for the present
analysis which seeks to determine the manner in which the relative ply orientations inl1uenl:e
the nature of the singularity as a basis for predil:ting lhe inlerfal:e whidl is most likely to
delaminate.

In the present paper the approach of Wang .md Choi (I tJX2a,b) is followed for the
analysis of a laminated plate with .10 elliptical hole. The proposed method is general in the
sense that it can be applied to any type of I:omposite laminate with an elliptical hole. For
the special ease when the el1cl:t of the hole is disregarded, the general method is applicable
to the special types of laminates treated by Wang and Choi (1982a,b). The analysis leads
to an over-determined system of equations which shows ill-conditioned behavior. This
mathematical obstacle is overcome by adopting the Singular Value Decomposition Method
(Stewart, 1973) to determine the real rank of the matrix when it is less than full rank.

The governing equations consist ofdifferential equations and therefore arc decomposed
into homogeneous and particular parts. The derivation of the homogeneous solution is
identical to the method of Wang and Choi (1982a,b). The particular solution satisfies the
governing equations, free edge conditions, the interl~lcial continuity relations, and the upper
and lower traction-free surface requirements, and represents the intlucnce of thc hole. The
effect of an elliptical hole is incorporated by adopting Lckhnitskii's solution for anisotropic
plates contuining an ellipticul cavity. By conversion of the composite laminute into un
anisotropic plate via classicallaminution theory (Jones, 1975), the struins were evaluatcd
from Lekhnitskii's solution. The corrcsponding stresses in the different plies can thus be
determined. As the unalysis is based on a set of eigenvalues and includes some numericul
integration, the accuracy of the results was assessed und demonstrated by selecting various
numbers ofeigenvalues and points of integration. Results are given which exhibit the effect
of thc hole's edge on the behavior of strcsses within the boundary layer and, for special
cases, throughout the laminate.

2. BASIC FORMULATION

2.1. Solution methodology
Consider a composite laminate containing an clliptical cutout as shown in Fig. I. A

system of Cartesian coordinates is introduced whose origin is located at the bore edge at
the examined interface and its orientation follows the scanning azimuth in such a way th<lt
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the x, axis is always radially oriented away from the center of the hole. Every lamina is
assumed to be elastic and anisotropic. obeying the generalized Hooke's law:

[c:} = [SHu}

in which {c:} are the strain components of the mth ply.

(I)

The solution methodology follows Lekhnitskii's (1963) approach for anisotropic plates
as used by Wang and Choi (l982a.b). The problem is treated as a boundary layer problem.
It is somewhat similar to the aerodynamic problem of viscous flow around an airfoil. In
the aerodynamic problem. we consider a streaming flow past a slender body. The fluid
viscosity is taken to be relatively small and the shearing stresses developed are very small.
It is known that except for a thin layer adjacent to the solid body. the transverse velocity
gradients are negligibly small throughout the flow field. However. within that thin boundary
layer. large shearing velocities are produced resulting in large shear stresses. The importance
of this concept is that it allows us to apply the more complicated equations related to the
boundary only within that thin layer. and some appreciable simplifying assumptions can
reasonably be made. [n the aerodynamics case. these arc the viscolls motion equations. In
our case. the boundary layer is a relatively thin region in the vicinity of the edge. At the
free edge the stress field is singular and thus its values are infinite. Within the boundary
layer stresses change rapidly from the edge to the other side of the region where they
agree with results from classical lamination theory (Jones. 1975) and anisotropic plates
(Lckhnitski. 1963). Within the boundary layer. changes with respect to XI and X~ arc
considered to be larger than changes with respect to Xl. Thus. within that region we Illay
simplify the problelll and neglect variations with respect to x I while requiring compatability
with the above-mentioned solutions which take changes with respect to Xl into accollnt.
sllch as the solution of an anisotropic plate with a cavity (Lekhnitskii. 1963). Several
assumptions should be noted.

(i) The composite laminate is of tinite width.
(ii) The laminate is long enough such that end efTects can be neglected.
(iii) Due to the neglect of variations with respect to Xl. we may assume a state of

generalized plane deformation within the boundary layer.

The equilibrium equations. in the absence of body forces. arc given by

rTij.i = 0 i. j = 1.2.3.

Due to assumption 3. derivatives with respect to X3 are omitted. reducing (2) to

rT3',1 +rT1U = o.

The small strain tensor is given in terms of the displacements II, by

Using (4) in (I) and integrating provides

(2)

(3'1)

(3b)

(3c)

(4)

II, = -~A,SJJx~-A4X1X3+UI(XI,X1)+W1X3-(t)lX1+1I10 (5a)

112 = - H2S33X~ +A 4x1 X 3 + U 2(XI. X~) +W3X, -UJ,X3 +1120 (5b)

11.1 = (A,XI+A2X2+A ..)S)1Xl+U3(XI.x~)+mIX2-(I)~XI+II", (5c)
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where u,o and w, are rigid-body translations and rotations, respectively. The stress in the
longitudinal direction, (T J3 is given by

(6)

where j = I. 2. 4, 5, 6 using the contracted Greek notation for stresses.
The derivatives of functions UI(x •• xz), Uz(XIt xz). U}(XI' x z) are expressed in the

fonn

VI. I = 5 IjO'j+SI)(A t x l +A 2X2+ A )

U2•2 = 521 0'j +Sz)(A IXI + A 2xz + A)

U).l = 5~j(Tj+Ss)(AIXt +A ZX 2+ A J)+A"Xl

U).2 = 5 4jO'j +S4)(A tXI +Azxz + A) - A4x I

U U +UZ•2 = 5("O'j+Sf,)(A,xI +A2X2+A)

where 5 is the reduced form of S given by

(7a)

(7b)

(7c)

(7d)

(7e)

(1\)

Following Wang and Choi (1982a.h), we adopt Lekhnitskii's stress potentials F, \P
defined by

(9)

Equation (9) satisfies (3) and when used in conjunction with (5) and (7) it creates a system
of governing eq uations that can be expressed in terms of partial differential operators which
have the form

{
L 3F+ L 2'1' = - 2A 4 +A .S)4 -A 2S 3S

L 4 F+L}'I' = 0

where

( 10)

2.2. Boundary conditions
We consider three types of boundary conditions. as follows in the next sections.

2.2.1. Traction-free edge boundary condtions. Assuming that the edges of the laminate
and the hole are traction-free, it follows that
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(12)

2.2.2. End conditions. We require static equilibrium with the remote loading by forming
the following integrals over the cross-sectional area B as shown in Fig. I (Lekhnitskii. 1963)

lfO"13 dX l dX1=O

1f 0"13 dXI dX1 = 0

Lf"1.1XtdXldX1 = M 11

If(0"~3X'-I1I.lXJdXI dx~ = M,~.

(13a)

( I3b)

( 13c)

( I3d)

( 13e)

(130

For cases where the analysis is done at an azimuthal angle C( different than 0', the coordinate
system is rotated such that the x, axis is tangent to the hole surface and creates an angle C(

with respect to the longitudinal axis of the plate. The domain in which integration is carried
out is the cross-sectional area 8/cos (C().

2.2.3. The cal'ity houndary conditions. A special treatment is required in the vicinity of
the hole. This is achieved by conversion of the laminate plate cross section into an aniso­
tropic plate via its effective elastic constants (E.. Ey, G.,., v.,.) calculated by classical
lamination theory (Jones, 1975). Analysis of such a plate with cavity subjected to various
loads, is done following Lekhnitskii (1963). The resulting strains. when multiplied by the
stiffness components of the relevant ply, provide the planar stress distribution in that ply.
These stress distributions arc applicable away from the hole where the edge effects are
negligible.

2.3. 'nterJ/Kial continuity
Continuity of tractions must be satisfied at the interface between the 111 and m + I plies:

and the displacements must be continuous:

lI~m)=u:m'l) i=I.2,3; x~=O..

( 14)

( 15)

3. SOLUTION OF THE GOVERNING EQUATIONS

The solution consists of two parts, homogeneous and particular solutions. The homo­
geneous part can be exactly derived and provides the stress singularities at the edges. On
the other hand, the particular solution can not be exactly obtained. and an approximate
method is applied.
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3.1. The homogeneous solution
Following Lekhnitskii (1963), the general forms of his stress potential are taken in the

form

6

F(xl"~:):: L Fk(Zk)
k-l

6

'P(xl,x:):: L 11kF t(Zk)
k-I

(16a)

(l6b)

where Zk :: Xl + PkX:, Pk are the roots of the characteristic equation as shown below, 11k are
ratios of components of the characteristic equation, and Ft(Zk) is the derivative w.r.t. the
argument Zk.

Regarding the homogeneous form of eqn (10), we consider the potentials F and 'P to
consist of two parts denoted by indices I and 0 designating the homogeneous and the
particular solutions. respectively. The characteristic equation of the homogeneous solution
is defined by the left-hand side (10). Eliminating one of the functions, say 'P" we obtain a
6th order equation for the remaining F I ,

(17a)

which can be decomposed into

(17b)

where

Conscqucntly, ncw sets of operators are obtained from (II) :

;r 2 - -/2 = ~HP -2S45Jl+S44

I):: SISP)-(SI4+S56)Jl2+(S25+S46)-S24

/4:: SIIJl4_2SI6P)+(2SI2+S66)p2_2S26p+Sn.

The resulting characteristic eq uation is

also

( 18a)

(I8b)

(18c)

(19a)

(19b)

It has been shown by Lekhnitskii (1963) that the Pk are complex conjugates where the
real part vanishes for orthotropic materials. Solving the polynomial (19), and substituting
for the stresses and displacements (9) and (7), respectively, yields the following results
designated by (II) for the homogeneous part of the solution

6

(1W = L pfF"(Zk)
k_1

6

(1~hi :: L F"(Zk)
1<-1

(20a)

(20b)
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6

U~h~ = - L: '1kF"(Zk) (2Oc)
k-I

6

U lhl - L: '1kf.lkF"(Zk) (20d)IJ -
k-I

6

u(tl = - L: f.lkF"(Zk) (20e)
k- 1

6

U11
h

) = L: PkF'(Zk) (200
k-I

6

U~h) = L: qkF'(Zk) (20g)
k-I

6

ujhl = L: tkF'(Zd (20h)
k=1

where

Pk = 511 / 11+512 - 514"k + 515 '1kllk - 5, ~/lk (21a)

- 522 524 "k - - (21 b)qk = SI21lk + -- - ---- +S25'1k -S26
Ilk Ilk

- 524 5H '1k - ..,
(21 c)tk = SI41lk+ - - -- + S45'1k - SH'

Ilk Ilk

Following the idea of Wang and Choi (1982a.b), the functions f~ (Zk) arc expressed in
the form

(22)

By choosing this particular expression. it can be readily shown (by performing second­
order derivatives) that the general form of the stresses can be represented in the form

(23)

It is obvious that, by solving for 0, we obtain the exact order of the singularity as r
approaches zero. Using a different approach. Zwiers et al. (1982) have found that a complete
solution to this problem involves an additional term which represents the logarithmic
behavior of the singularity as well as dependence of a constant taken to be a material
parameter. This part of the behavior and the associated terms are of no importance to the
present study since they do not vary with changes in adjacent ply orientations for a given
laminate. For the present solution scheme. we require that (22) followed by (23) will satisfy
all boundary conditions and governing equations for the homogeneous and particular parts
of the solution. Substituting (22) into (20) provides the following:

J

u(N = L: [ckf.l~ZZ+ck+Jti1ztl
k-I

J

u~~ = L: [ckZZ+ck+Jztl
k_1

J

uihj = - L: [ck'1k Z Z+ Ck+Jrlk z tl
k-I

(24a)

(24b)

(24c)
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3

dt1 = L [ctPtZ~"'1+Ck+3PtZ~+I]/(J+I)
k-l

J

U~hl = L [ctQtZ2+ 1 + Ck+ JqtZ~+ I]/(J + 1)
t-l

J

U)h
1 = L [ckttZ:+I+Ct+34Z~+1]/(J+ 1).

t_1

1123

(24d)

(24e)

(24f)

(24g)

(24h)

It should be noted that the present contribution (23) from the homogeneous solution
involves the parameter J. This parameter depends on the specific geometry in the close
vicinity of the edge as well as on the elastic constants of the two adjacent plies. Thus. (23)
is valid at the hole as well as at the plate edge. and refers to the relevant ply pair in which
(j was c'llculated.

Substituting (22) into the free edge boundary conditions (12). yields three equations
for each of the two adjacent plies. resulting in a total of six equations. Similarly. substitution
into the interfacial conditions (15) contributes an additional six equations. There are six
unknown coellicients ('t. k = 1-6. for each layer and the additional unknown power fJ. This
system of 12 algebraic equations can be presented in a matrix form.

[A]{C} =0

where [A J is a 12 x 12 matrix whose clements involve (j as a power. In addition.

{,,1. = [('1m ) ('{"'!-!l]T k = 123456t'" j "~Ie • • , , , .

(25)

This system establishes a nonlinear eigenvalue problem for which {C} are the eigenvectors
and (j I are the corresponding eigenvalues determined from the requirement that [A] must
vanish for a non-trivial solution:

det[A] = O. (26)

The solution of eqn (26) is performed by a deflation technique as presented by Muller
(1956). Since (26) is a transcendental equation. an infinite set of solutions for J is obtained.
The algebraically smallest eigenvalue is a real number in [- I. OJ and is the order of the
singularity as explained by Wang and Choi (1982a.b). For the case ofan angle-ply laminate.
the higher eigenvalues are either integers or pairs of conjugate complex numbers. The
properly truncated set ofeigenvalues is used in the particular solution to ensure convergence.
Once (25) is solved. the stresses and displacements are obtained from (24) using the
expressions

(27a)

(27b)

(27c)

where IVI and gil" are the eigenfunctions which coincide with the right-hand side of eqn (24)
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and include the infinite set of J•. The infinite set of coefficients {d~hi} is to be detennined in
conjunction with the particular solution.

3.2. The particular solution
A particular solution (denoted by superscript p) to eqn (10) is expressed in the fonn

F'pl = al:d +a~xTx~+a3xlx~+a~x~+a5xT +al>xlx~ +a;x~

'PIl'I = a~:d +a9xlx~ +alux~ +allx, +al~x~.

Substitution of eqn C~8) into eqn (9) yields

(fW = 2a3xI +6(/~x~+2(/7

(f~] = 6(/IXI +2(/~x~+2(/5

(feri = - 2a~xI - a"x~ - all

(flti = (/9XI + 2a,()x~ +a, ~

and

(28)

(29a)

(29b)

(29c)

(29d)

(2ge)

(30)

The expression of the partft:ular part of the displacements. 1/:/'1. follows exactly the form of
cljns (5a c). in which

Viti = lGIIXT+GI~XIX~+GI\.\·,+l(G,,~-G~I).d+lG"lX~ (3Ia)

vlt = GI~XIX!+ lG~~X~+G~3X!+ l(G r" -GdxT+ lG61XI (3Ib)

Clf' = lG 51 xT + (G,~ + A~)x,x" +G51XI + lG~~x~ + G~\x~ (3Ic)

and

GIl = 251IaJ+6'~nal-2S,~aM+S,5a9-S,,,a~+SllAI (32a)

GI~ = 6S,la~+2Slza~-S,~a9+2'~5(/lu-251I>a1+SJ3A~ (32b)

Gn = 2S,la7+2S,~as-S,~all+S'5a,~-S,6a,,+S}lA.l j= 1.2,4.5,6. (32c)

The cocflicients in eqn (28) arc determined by satisfaction of the governing equations
(10). the traction-free boundary conditions. eqn (12). and the interfacial conditions (14),
(15). To this end, a system of 34 linear algebraic equations is obtained for the 44 unknown
coeflicients in eqns (29)-(32). Equation (10) yields

- 651~a 1 +2(5z5 + S~I»a1 - 2(SI~ + 551»(/1 + 6S15(/~ + SHaM

-2S~5(/.,+2S55(/I() = -2A~+AIS1J-A1S35 (33a)

a:"'I.1'" .. II = 0 i = 3.4,6.7,10,12 (33b)

and the following quantities arc identical for the 111 and the 111 + 1 plies:
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ar. j=1.2.5.8.11; AJSn • i=1.2.3; A~: Gil: G 13 ; Ghl-GI~;

!G63 +W3; G 51 ; G53 : U,O' i= 1,2.3; Wk. k= 1.2. (33c-m)

Using eqns (33b.c). we can rewrite (33a) in the form

Similar elimination will provide

Gil = 6SI~al +SI5a~+SI3AI

GI3 = 2SI~a5+SI3A3

Ghl = -2Sh~a8-2S66a~

GI~ = 2SI~a~+SI3A~

Gh3 = -Sh~all

G'I = 6S5:{l1 +S'5a~

G53 = 2S5~{l5.

(34)

(35a)

(35b)

(35c)

(35d)

(35e)

(35f)

(35g)

The usc of eqn (35) in (33d-k) assuming no rigid body translations and rotations. results
In

ad2(S';·?-S';~·')]=O. (41)

At this stage. we arc left with II unknowns: al' al. {l5. {1M. a~. a~. all. A I. A 2, A3• A~ where
{I~ and a:} arc for the m th and (m + I)th plies. respectively. and the rest of the coefficients
arc identical for both layers. These unknowns appear in the eight equations, (34), (36)­
(41). In order to impose the far-end conditions (13). the full expressions for the stresses
(i.e. the sum of the homogeneous and particular parts) are needed. This adds the inifinite
number of unknowns d~hJ [eqn (27)]. It should be noted that although in practical com­
putation this set of unknowns. d~h), is truncated. the system of equations is still over
determined since some of the unknowns were eliminated by the additional equations. Next.
the double integrals in (13) are exactly evaluated. The results are in the Appendix. Equations
(AI)-(A6) together with (34). (36)-(41). form a system of 14 equations in the above II
unknowns and the additional unknowns {d.}.

In order to incorporate the effect of the hole. the approach mentioned in (2.2.3) is
applied. It should be noted that the calculated stresses using Lekhnitskii's theory for
anisotropic plate with elliptical cavity are O'\j'cal and O')j)cal. Thus.
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a~'1·(xl'Xz) = a~'1·cal(XI'XZ)

all'1I(XI.XZ) = a~'1)cal(XI.X~) m = 1.2.... No. of plies. (42)

The traction-free boundary conditions at the upper and lower surfaces of the laminate are:

a~ki(XI'XZ) = 0

a~kj(xl'xz) = 0

a(,"i(x"x~) = 0 k = 1.2; Xz = b. -c. respectively.

At the exterior free edge

(J\kl(xloxz) = 0

(J\k~(X\.X2) = 0

(J(,"l(xlox~) = 0 k = 1.2; Xz = a.

(43)

(44)

For the symmetric laminate. the following relations are required at the plane of symmetry

UU(XI.X;) = 0

112.I(X I .XJ = 0

113.2(XI.X2) = o. (45)

The above conditions (42)-(45). are satisfied by mInimIzation of the error of the
residuals in the sense of a weighting function technique. The stresses and the relevant
derivatives of the displacements [as required in eqn (45)J have the general form

(46)

where Dnarc the coetllcients a,. A,. cllhl
• and cPn arc the trial functions to be identified with

the eigenfunctions of the exact solution. The function f is either zero or consists of the
solutions obtained from the hole effect, eqn (42). Orthogonalization of IR with the trial
functions. such that the inner product vanishes, is performed in the form

(47)

The inner products yields n equations where n is the number of all unknowns taken into
account. Thus

±D, r (cPA>,) dS = r (c/JJ) dS j = I. 2....• n
i-I Jo Jo (48)

where ID is the domain in which the problem is treated and therefore it is where integration
is performed. In our case, this domain is changed according to the line where the boundary
condition takes place and that is where integration is carried out. The explicit form of eqn
(48) is given by
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(49)

in which j = l. 2•... (No. of unknowns) and t is the laminate thickness. In eqn (49), F.i(m)
is defined by the homogeneous and particular parts of the solution, eqns (27) and (29)
respectively.

The index ~ = 1, 2, 3, 4, 5, 6 denotes the contracted Greek notation for the stresses.
The functions Lp,(m) (fJ = 1,2.3) are defined by the derivatives (45). The integrals in (49)
are performed numerically using Simpson's method. The number of points of integration
is of great importance when convergence of the solution is considered. Equations (34),
(36)-(41), (49) provide a set of linear algebraic equations

AD = lB (50)

in which A is the coefficients matrix with order (q x n), q > n; q is the number of unknowns
associated with the 14 equations from the elasticity solution (34). (36)-(41). (49), (AI)­
(A6), and n is the total number of unknowns. In eqn (49) D is a vector (n x I) of the
unknowns.

The over determined system may be solved in the least square sense as

(51)

in which At is the conjugate transpose of A. Equation (51) turns out to be solvable since
AtA is of the order (n x fl) and A at is (n x I), but due to the nature of the general solution
it appears that some rows and/or columns might be zero or show dependency which causes
AtA to be singular. Even if a mathematical singularity does not occur, due to the use of a
computer. the solution of such a system might be strongly ill-conditioned, depending upon
the properties of the plies which enter the equations. This ill-conditioned behavior may be
treated by adopting the method ofsingular-value decomposition (Stewart, 1973). According
to this method, every matrix A (q x n), q > fl, may be expressed as the multiplication of
three matrices as follows

A = Ur.VT (52)

where U and V are (q x q) and (n x n) unitary matrices whose columns are the ortho­
normalized eigenvectors of AA Tand ATA, respectively. The matrix r. is diag (0', 0) which
is a (q x n) matrix with 0' being the square roots of the non-zero eigenvalues of ATA. Let
U' be denoted by

(53)

in which r., I are the reciprocals of the non-zero components of r. in a descending order
on the diagonal. Let us also define w by
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W,
t',=- i= 1,2, ... ,n.

(f,

(54)

(55)

The desired solution is determined from

{D} = (V]{ t' } . (56)

Having obtained {D}, the displacements and stresses are computed from eqns (27), (29)
and (30).

4. CONVERGENCE OF THE SOLUTION AND EXAMPLES

Consider the case of a [±45]. laminate which was considered by Wang and Choi
(1982a,b), Wang and Crossman (1977), Pipes and Pagano (1970) and Kassapoglou and
Lagace (1987). The properties of the unidirectional single ply as given by the above
mentioned authors, for the graphite-epoxy system are given in Table I. As a case study, a
circular hole is centrally located, and the laminate is subjected to a unit stress in the x J

direction as shown in Fig. 3(a).
Results were obtained in three locations: in the vicinity of the hole and at the free edge

of the laminate as well as far from these two locations where classical lamination theory or
results ofanisotropic plate analysis with a center hole are valid. Convergence of the obtained
stresses was studied by examining the effect of the number of eigenvalues and the number
of integration points on the results. The study of the effect of the number of eigenvalues
was limited to the ability of the computer to provide accurate solutions when using the
Muller (1956) deflation method since this method involves calculations of differences
between numbers that converge to the point that multiplication by that difference results
in computer underflow. Convergence was studied on all stresses. Predicted results for the
normal stress 0"22 arc exhibited for three different numbers ofeigenv.llues and 200 integration
points as shown in Fig. 2. Observing curves 1-5 in Fig. 2, we conclude that convergence is
achieved using 25 eigenvalues with slight changes between the cases of 50, 100, and 200
integration points. Curves 4 and 5 show results in which low numbers of eigenvalues arc
used and therefore result in wrong stress distribution. Curves 1-3 present close results in
which the same number of 25 eigenvalues are used and show convergence. The results of
curves 1-3 at xlla = I, match the results presented by Wang and Choi (1982a,b) for the
similar case of a straight free edge. In order to investigate the effect of the hole on the stress
distribution at various locations along its circumference, we present in Fig. 3(b) all stress
distributions along a cut made perpendicular to the laminate straight free edge, and in Fig.
3(c), the variation of the normal stress O"n along the cross sections which are radial to the
hole at IX = 0', 10", 30", 60", and 80'. This figure exhibits well the fiber orientation depend-

Table I. Material properties of single unidirectional
ply of the eltamined laminate

E,
E,
E,

G12

Gil
G"

E(msi)

20.0
2.1
2.1
0.85
0.85
0.85

0.21
0.21
0.21

S/(GN/m')

137.50
14..14
14..14
5.84
5.84
5.84
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X(a

Fig. 2. Convergence of (1:: through various numbers of eigenvalues and points of integration.
Curve No. or Points of

No. eigenvalues integration
I 25 200
2 25 100
3 25 50
4 15 100
5 1 100

ence which provide various orders of singularities. The values of the orders of singularity
arc given by

15 I = - 0.025575658 for C( = 0"

(}I = -0.026100409 for C( = 10"

15 I = - 0.030274706 for C( = 30"

15, = - 0.030274706 for C( = 60'

15, = -0.026100409 for C( = 80"

where (), for the cases of C( = 10". 30". 60" and 80" is calculated for the direction tangential
to the hole edge which provides an interface between [35/ - 55]. [15/ - 75]. [- 15. 75] and
[ - 35/55] orientations. respectively. The latter analysis is done using a coordinate system
transformed to mutch the direction tangential to the hole and to the radial cross section in
order to satisfy the basic assumptions introduced in Section 2.1 and the traction-free
boundary conditions at the hole edge as explained in Section 2.2.1. The validity of the
results for the transformed configuration are limited to the vicinity of the hole within the
region in which the stresses are controlled by the mathematical singularity.

5. CONCLUSIONS

The present investigation exhibits the following points of interest.

(i) U I J satisfies the traction-free boundary condition as also indicated by Kassapogolou
and Lagace (1987).

(ii) Un exhibits singular behavior and tends to - 00 as previously shown by Wang and
Choi (1982a.b) for the cross section at XJJ = O. Note that at this cross section the distribution
at the hole is somewhat different from the one at the laminate free edge. That indicates
the influence of the hole constraints on the edge effect. However, when examining the
hole circumference, we find a region in which Un is in tension and more likely to cause
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Fig. 3. (a) Geometry and description of cuts in (b) and (c). (b) Stresses distribution at ex = 0' ; 2S
eigenvalues. 200 points of integration. (c) Comparison of normal stress Un at various cuts.

delamination. For the (± 45), laminate, that region was found to be the arc which lies
between 10 and 50 degrees approximately.

(iii) The stress concentration around the hole matches Lekhnitskii's development even
though a slight relief is detected at the edge due to the boundary layer effect.

(iv) The present work provides a general framework for the analysis of the ,J singularity
for any type oflaminate containing an elliptical cavity, and for the determination ofsingular
stress fields associated with edge effects in those configurations.

This method of analysis has been used successfully to predict certain aspects of delamination
in notched composite laminates. These results will be presented in a subsequent paper.
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APPENDIX: INTEGRATION OF THE FAR END CONDITIONS EQUATIONS

(AI)

(A2)

(Al)

(M)
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